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Abstract

Engineering and scientific applications are becoming increasingly modular, utilizing
publicly defined interfaces to integrate third party tools and libraries for services such as mesh
generation, data partitioning, equation solvers and optimization. As a result, it is important to
understand and model the interactions between these various modules, and to develop good
abstract interfaces between them. One category of modules that is becoming increasingly
important is abstract numerical algorithms (ANAs). ANAs such as linear and nonlinear
equation solvers, methods for stability and bifurcation analysis, uncertainty quantification
methods and nonlinear programming solvers for optimization are typically mathematically
sophisticated but have surprisingly little essential dependence on the details of what computer
system is being used or how matrices and vectors are stored and computed. As a result, using
abstract interface capabilities in languages such as C++, we can implement ANA software that
it will work, unchanged, with a variety of applications and linear algebra libraries.

In this paper, we provide an overview of the Thyra effort which at its most basic level
defines fundamental abstract linear operator and vector interfaces. These linear operator/vector
interfaces provide the basic functionality and interoperability for a broad range of ANAs.
Many other higher-level abstractions are built on top of theThyra operator/vector interfaces.
The Trilinos packagethyra defines these different sets of C++ interfaces and provides
optional support software.
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1 Introduction

One area of steady improvement in large-scale engineering and scientific applications is the
increased modularity of application design and development. Specification of publicly-defined
interfaces, combined with the use of third-party software to satisfy critical technology needs in
areas such as mesh generation, data partitioning and solution methods have been generally positive
developments in application design. While the use of third party software introduces dependencies
from the application developer’s perspective, it also gives the application access to the latest
technology in these areas, amortizes library and tool development across multiple applications and,
if properly designed, gives the application easy access to more than one option for each critical
technology area, e.g., access to multiple linear solver packages.

One category of modules that is becoming increasingly important is abstract numerical algorithms
(ANAs). ANAs such as linear and nonlinear equation solvers,methods for stability and bifurcation
analysis, transient solvers, uncertainty quantification methods, and nonlinear programming solvers
for optimization are typically mathematically sophisticated but have surprisingly little essential
dependence on the details of what computer system is being used or how matrices and vectors are
stored and computed. Thus, by using abstract interface capabilities in languages such as C++, we
can implement ANA software such that it will work, unchanged, with a variety of applications and
linear algebra libraries.

Here we describe a set of abstract operator/vector interfaces that allows the specification of ANAs
from basic Krylov linear equation solvers all the way up to interior-point methods for optimization.
At the core, we define a set of basic operator/vector interfaces that form the the foundation for (i)
ANA development, (ii) the integration of an ANA into an application (APP) and (iii) providing
services to the ANA from a linear algebra library (LAL). By agreeing on a simple minimal
common interface layer such as the Fundamental Thyra ANA Operator/Vector Interfaces described
here, we eliminate the many-to-many dependency problem of ANA/APP interfaces.

It is difficult to describe a set of linear algebra interfacesoutside of the context of some class of
numerical problems. For this purpose, we will consider numerical algorithms where it is possible
to implement all of the required operations exclusively through well defined interfaces to vectors,
vector spaces, and linear operators and higher level abstractions built on these. The fundamental
Thyra operator/vector interfaces described here are the common denominator of all abstract
numerical algorithms.

We assume that the reader has a basic understanding of vectorreduction/transformation operators
(RTOp) [3], is comfortable with object-orientation [11] and C++, and knows how to read basic
Unified Modeling Language (UML) [10] class diagrams. We alsoassume that the reader has some
background in large-scale numerics and will therefore be able to appreciate the challenges that are
addressed by Thyra.

Note that the online documentation for Thyra at

http://trilinos.sandia.gov/packages/thyra

should be the definitive information source for Thyra. This document only tries to provide an
overview of Thyra and explain the philosophy behind it.
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2 Classification of linear algebra and other interfaces

Although we will discuss APPs, ANAs and LALs in detail later in this section, we want to briefly
introduce these terms here to make them clear. Also, although there are certainly other types of
modules in a large-scale scientific/engineering application, we only focus on these three since they
are the ones more directly related to ANAs.

• Application (APP): The modules of an application that are not ANA or LAL modules.
Typically this includes the code that is unique to the application itself such as the code that
formulates and generates the discrete problem to be solved.In general it would also include
other third-party software that is not an ANA or LAL module.

• Abstract Numerical Algorithm (ANA): Software that drives asolution process, e.g., an
iterative linear or nonlinear solver. This type of package provides solutions to and requires
services from the APP, and utilizes services from one or moreLALs. It can usually be
written so that it does not depend on the details of the computer platform, or the details of
how the APP and LALs are implemented, so that an ANA can be usedacross many APPs
and with many LALs.

• Linear Algebra Library (LAL): Software that provides the ability to construct concrete linear
algebra objects such as matrices and vectors. A LAL can also be a specific linear solver or
preconditioner.

An important focus of this paper is to clearly identify the interactions between APPs, ANAs and
LALs for the purposes of defining the Thyra interfaces and to differentiate the Thyra interfaces
from other interfacing efforts.

The requirements for the linear algebra objects as imposed by an ANA are very different from the
requirements imposed by an APP code. In order to differentiate the various types of interfaces and
the requirements associated with each, consider Figure 1. This figure shows the three major
categories of software modules that make up a complete numerical application. The first category
is application (APP) software in which the underlying data is defined for the problem. This could
be something as simple as the right-hand-side and matrix coefficients of a single linear system or
as complex as a finite-element method for a 3-D nonlinear PDE-constrained optimization problem.
The second category is linear algebra library (LAL) software that implements basic linear algebra
operations [9, 1, 5, 13, 2, 12]. These types of software include primarily matrix-vector
multiplication, the creation of a preconditioner (e.g. ILU), and may even include several different
types of direct linear solvers. The third category is ANA software that drives the main solution
process and includes such algorithms as iterative methods for linear and nonlinear systems; explicit
and implicit methods for ODEs and DAEs; and nonlinear programming (NLP) solvers [16]. There
are many example software packages [2, 13, 12, 7, 4] that contain ANA software.

The types of ANAs described here only require operations like matrix-vector multiplication, linear
solves and certain types of vector reduction and transformation operations. All of these operations
can be performed with only a very abstract view of vectors, vector spaces and linear operators.

An application code, however, has the responsibility of populating vector and matrix objects and
requires the passing of explicit function and gradient value entries, sometimes in a distributed
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memory parallel environment. This is the purpose of an APP/LAL interface. This involves a very
different set of requirements than those described above for the ANA/APP and ANA/LAL
interfaces. Examples of APP/LAL interfaces include the FEI[8] and much of the ESI [14].

Figure 1 also shows a set of LAL/LAL interfaces that allows linear algebra objects from one LAL
to collaborate with the objects from another LAL. Theses interfaces are very similar to the
APP/LAL interfaces and the requirements for this type of interface is also not addressed by Thyra.
The ESI [14] contains examples of LAL/LAL interfaces.
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3 Some Basic Requirements for Thyra

Before describing the C++ interfaces for Thyra, some basic requirements are stated.

1. Thyra interfaces should be portable to all the ASC [17] platforms where ASC applications
might run and to other important platforms.

2. Thyra interfaces should provide for stable and accurate numerical computations at a
fundamental level.

3. Thyra should provide a minimal, but complete, interface that addresses all the basic
efficiency needs (in both speed and storage) which will result in near-optimal
implementations of all of the objects and all of the above mentioned ANA algorithms that
use these objects.

4. Maximally general ANAs developed with Thyra should be able to transparently utilize
different types of computing environments such as SPMD1, client/server2, out-of-core3, and
any combination of these configurations.

5. The work required to implement adapter subclasses (see the “Adapter” pattern in [11]) for
and with Thyra should be minimal and straightforward for allof the existing related linear
algebra and ANA interfaces. This requirement is facilitated by the fact that the Thyra
interfaces are minimal.

A hand-coded program (e.g. using Fortran 77 and MPI) should not provide any significant gains in
performance in any of the above categories in any computing environment or configuration. A
hand-coded algorithm in Fortran 77 with MPI should not be able to provide significant
improvements in storage requirements, computational speed, or numerical stability. There are
many numerical algorithms can can not be considered to be “abstract” (e.g. Gaussian Elimination)
and therefore Thyra and like abstract interfaces should notbe used for such algorithms. However,
drawly the line between an ANA and a non-ANA can be quite fuzzyin practice.

1Single Program Multiple Data (SPMD): A single program running in a distributed-memory environment on multiple
parallel processors

2Client/Server: The ANA runs in a process on a client computerand the APP and LAL run in processors on a server
3Out-of-core: The data for the problem is stored on disk and isread from and written to back disk as needed
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4 Mathematical Foundation for Fundamental Thyra ANA
Operator/Vector Interfaces

Before describing theThyra Fundamental ANA Operator/Vector Interfacesthat form the
foundation for all of the Thyra ANA interfaces in more detail, we must first clearly define the
mathematical foundation for the abstractions of vectors, vector spaces, and linear operators.

All Thyra vectors belong to a vector space and are representable as an array of scalar coefficients
x̃∈ IRn and a (non-unique) basisE ∈ IRn×n of the form

x = Ex̃. (1)

For a given Thyra vector space, the basis representationE ∈ IRn×n is non-unique but the symmetric
positive definite scalar (inner) product matrix

Q = EHE (2)

whereQ∈ IRn×n is unique. GivenQ∈ IRn×n, the scalar product is defined as

xHy = x̃HQỹ =< x̃, ỹ > . (3)

For Q∈ IRn×n to be full rank,E ∈ IRn×n must be full rank. Here we define a Euclidean vector
space as one whereE = I ∈ IRn×n andQ = EHE = I ∈ IRn×n.

In Thyra, vector spaces and vectors are abstracted using theC++ base interface classes
Thyra::VectorSpaceBase andThyra::VectorBase respectively. Vectors are created from a
vector space using the “Abstract Factory” design pattern using the nonmember function
createMember(vecSpc).

In addition to vectors and vector spaces, Thyra also defines linear operators which linearly map
vectors from one vector space to another. The definition of a linear operator is strongly influenced
by the definition of the scalar product associated with the vector spaces and whether the mapping is
between Euclidean vectorsy = Axor between coefficient vectors ˜y = Ãx̃. In Thyra, vectors are a
specialization of linear operators and therefore every vector is also a linear operator. Therefore,
when one writes

z= xHy (4)

thenxH must be interpreted to be the adjoint linear operator ofx.

Given this notation, the vectorx would be considered to live an Euclidean vector spacex∈ IRn

while the vector ˜x would be considered to live in the non-Euclidean vector space x̃∈ X which is
defined by the scalar product matrixQ∈ IRn×n. Therefore, it is actually not clear whether an
abstract vector object represents the Euclidean vectorx∈ IRn which just happens to be stored as a
set of coefficients ˜x∈ X or if it represents the coefficient vectors ˜x∈ X themselves. This ambiguity
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of the interpretation of vectors and linear operators also results from the ambiguity of
interpretation of the vectors in that they can be thought of as the Euclidean linear operators that
only update the coefficient vectors or as linear operators that act directly on vector coefficients.

The Fundamental Thyra ANA Operator/Vector Interfaces require that every Thyra vector be
represented as a finite-dimensional set of scalar coefficients and that the scalar product< x̃, ỹ > be
equivalent to the two-sided application some finite-dimensional symmetric positive definite matrix
Q∈ IRn×n such that< x̃, ỹ >= x̃HQỹ. The Thyra interfaces do not try to pretend that its vectors are
infinite dimensional or that they admit more general implementations as allowed by infinite
dimensional Hilbert spaces. While every Thyra vector must be stored as a set of scalar coefficients
the interfaces make no assumptions whatsoever about where or how those coefficients are stored.
A fully general ANA can make no assumptions about how vectorsare stored or laid out in
memory, only that those coefficients do exist and that the coefficients can be exposed to reduction
and transformation operators (see [3]).

While accessing the elements of a vector is ill advised in a general ANA, the Thyra vector interface
supports acquiring direct views of any range of vector coefficient data (see
Thyra::VectorBase::acquireDetachedView(...)).

Again, thyra does not try to hide the fact that a vector is simply a set of scalar coefficients
associated with some basis. Thyra does not even really try tokeep the client from accessing the
actual coefficients of the vectors since it can access them with an RTOp object if desired. What
Thyra does do is to abstract where the vector coefficients live and what native data structure is used
to hold the coefficients. None of vector coefficients may evenbe directly be head in main memory
in the process where the ANA is running but there is aways a (perhaps very inefficient) mechanism
to get a view of them. ANAs that want to be maximally general and efficient should not try to
directly access the vector elements explicitly and many ANAs do not need to. However, there are
perfectly reasonable ANAs that do need to access the explicit vector coefficients for vectors from
certain vector spaces (such as vectors in the design space insome reduced-space optimization
algorithms) and Thyra provides efficient and yet 100% general ways to access these coefficients.
Every Thyra vector space also has a finite dimension that is accessible as a property of the vector
space and in integer value.

While Thyra requires vectors to be finite dimensional and thevector coefficients must be
accessible (if to none other than to RTOps), it allows complete freedom in the implementation of
scalar products of general linear operators that map vectors from one vector space to another.
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5 Overview of Fundamental Thyra ANA Operator/Vector Interf aces

The Fundamental Thyra ANA Operator/Vector Interfaces are shown in Figure 2. The key
abstractions include vectors, vector spaces, and linear operators. All of the interfaces are templated
on theScalar type (the UML notation for templated classes is not used in the figure for the sake of
improving readability).

Vector space is the foundation for all other abstractions. Vector spaces are abstracted through the
VectorSpaceBase interface. AVectorSpaceBase object acts primarily as an “Abstract
Factory” [11] that creates vector objects (which are the “products” in the “Abstract Factory” design
pattern).

Vectors are abstracted through theVectorBase interface. TheVectorBase interface is very
minimal and really only defines one nontrivial functionapplyOp(...). TheapplyOp(...)
function accepts user-defined (i.e. ANA-defined) reduction/transformation operator (RTOp)
objects through the templated RTOp C++ interfaceRTOpPack::RTOpT. An ever increasing set
of concrete implementations of RTOps is provided along withwrapper convenience functions in
the ANA support code collection. The set of operations is also easily extensible. Every
VectorBase object provides access to itsVectorSpaceBase (that was used to create the
VectorBase object) through the functionspace().

TheVectorSpaceBase interface also provides the ability to createMultiVectorBase
objects through thecreateMembers(numMembers) function. AMultiVectorBase is a
tall thin dense matrix where each column in the matrix is aVectorBase object which is
accessible through thecol(...) function.MultiVectorBases are needed for near-optimal
processor cache performance (in serial and parallel programs) and to minimize the number of
global communications in a distributed parallel environment. TheMultiVectorBase interface
is useful in many different types ANAs such as block Krylov methods. The interface class
VectorBase is derived fromMultiVectorBase so that everyVectorBase is a
MultiVectorBase. This simplifies the development of ANAs in that any ANA that can handle
MultiVectorBase objects should automatically be able to acceptVectorBase objects as
well.

VectorSpaceBase declares a virtual function calledscalarProd(x,y)which computes
the scalar product< x,y > for the vector space. There is also aMultiVectorBase version
VectorSpaceBase::scalarProds(...) (not shown in the figure) that computes the
scalar products of each set of column vectors in two multi-vectors. Finally,VectorSpaceBase
also includes the ability to determine the compatibility ofvectors from different vector spaces
through the functionisCompatible(vecSpc). This is useful primarily for error checking and
debugging.

Another important type of linear algebra abstraction is a linear operator which is represented by the
interface classLinearOpBase. TheLinearOpBase interface is used to represent quantities
such as a Jacobian matrix. ALinearOpBase object defines a linear mapping from vectors in one
vector space (called thedomain) to vectors in another vector space (called therange). Every
LinearOpBase object provides access to these vector spaces through the functionsdomain()
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andrange(). The exact form of this mapping, as implemented by the functionapply(...), is

Y = αM X + βY (5)

whereM is aLinearOpBase object;X andY areMultiVectorBase objects; andα andβ are
Scalar objects.

A LinearOpBase object can also, optionally, support the transpose (or adjoint) operation:

Y = αop(M)X + βY (6)

through the functionapplyTranspose(...), whereM is aLinearOpBase object;op(M)
is MT or MH (as determined by thecon j argument);X andY areMultiVectorBase objects;
andα andβ areScalar objects. The functionapplyTranspose(EConj)will return false if a
particular form of the transpose is not supported.

If the adjoint is supported, then it must satisfy the adjointproperty Specifically, for any two vectors
w∈ D (domain space) andu∈ R (range space), the adjoint operation must obey the adjoint
property

< u,Av>R ==< AHu,v >D .

Another important part of this design is the fact thatMultiVectorBase derives from
LinearOpBase and therefore every multi-vector object is also a linear operator. This is an
elegant way to support the notions of block inner products and block updates.

A block inner product is specified as

Z = YHX

whereY, X andZ are all multi-vectors. Note that sinceY is a linear operator thenYHX is not
simply the block dot product involving the coefficients but instead must be consistent with the
scalar product for the range ofY.

A block update takes the form

Z = αYX+ βZ

whereY, X andZ are all multi-vectors andα andβ are scalars.

Also note that sinceMultiVectorBase derives fromLinearOpBase andVectorBase
derives fromMultiVectorBase, therefore, every vector object is also a linear operator. While
this may not be a terribly useful feature it does mean that onemust interpretyHx to be the same as
< y,x > and not just the dot product when the space is non-euclidean.
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6 Summary

The Fundamental Thyra Operator/Vector Interfaces providethe intersection of all of the
functionality required of linear operators and vectors by avariety of abstract numerical algorithms
ranging from iterative linear solvers all the way up to optimizers. By adopting Thyra as a standard
interface layer, interoperability between applications,linear algebra libraries, and abstract
numerical algorithms in advanced scientific computing environments becomes automatic to a large
extent.
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